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Hydromagnetic surface waves propagating on the surface of a finitely conducting 
fluid are studied experimentally and theoretically. An alternating magnetic field 
is used, so that the field is largely excluded from the bulk of the fluid. Thus, the 
magnetic damping of the waves is negligible, and the perfectly conducting d.c. 
case is simulated. The effects of a finite electromagnetic skin depth, 6, are included 
in the calculation of the theoretical wave dispersion relation. It is predicted that 
as 6 is increased and becomes comparable to the wavelength of the surface wave, 
the effect of the magnetic field on the fluid motion is decreased. This prediction 
is confirmed experimentally. 

1, Introduction 

The conductivity of available liquid metals is so low that laboratory observa- 
tion of hydrodynamic surface waves with a d.c. applied magnetic field of the type 
discussed by Rook (1964) is very difficult. Electromagnetic damping of the wave 
motion is the dominant effect. However, if a high frequency alternating magnetic 
field with a small skin depth is applied above a conducting fluid, the magnetic 
field is excluded from the bulk of the fluid, and hydromagnetic surface waves can 
be observed. This paper describes the experimental observation of plane hydro- 
magnetic waves similar to those shown in figure 1, and compares the experiment 
with a theoretical analysis which includes the effects of a finite skin depth. 

The applied magnetic field, Hp cos w, t ,  is parallel to the direction in which the 
waves propagate on the surface of the fluid (the z-direction in figure 1). Because 
the magnetic field is excluded from the fluid, the magnetic field lines must follow 
the wave contour of the interface. It is apparent from the figure that the magni- 
tude of the magnetic field is greater a t  the peaks of the wave than at the valleys. 
Therefore, the magnetic field exerts a greater pressure at  the peaks than at the 
valleys, producing a magnetic restoring force. 

Waves of this sort were first treated analytically by Kruskal & Schwarzchild 
(1954) for a perfectly conducting fluid with a d.c. magnetic field. A later analysis 
(Melcher 1963) included the effects of surface tension, as well as the effects of 
bounding walls at  x = b and x = -a. This analysis, too, was based on a perfectly 
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conducting fluid model. The dispersion relation relating the frequency of the 
surface wave to its wave number, k = %/A,  obtained by Melcher, is 

where 
w2pcoth(ka) = Tk3+pgk+poH~k2coth(kb), (1) 

w = 2rrf = frequency of the surface wave, 
p = mass density of the fluid, 
T = surface tension of the fluid, 
g = acceleration of gravity, taken as a positive number of the system of figure 1, 

H, = unperturbed d.c. magnetic field in amperes/meter (rationalized MKS units), 
,u0 = magnetic permeability of free space. 

a, b are defined in figure 1. 

X 

t 
x = b  

x =o 

FIGURE 1. Hydrodynamic surface waves with the magnetic field 
excluded from the fluid. 

Generalization of Melcher’s theory is achieved by substituting the r.m.s. a.c. 
magnetic field strength Hp/ J2 for the d.c. field strength, H,. This substitution is 
justified by the experiments of Colgate, Furth & Halliday (1960), in which the 
equilibrium of liquid sodium metal in the presence of an alternating magnetic 
field agreed closely with predictions based on the use of the r.m.s. field strength. 
Further justification is given by the experiments of Devitt & Melcher (1965) 
in which quantitative agreement is obtained for electrohydrodynamic waves 
between a theory based on a d.c. electric field and an experiment using an a.c. 
electric field. This simple extension of the d.c. theory will not be valid, however 
when the magnetic skin depth 6 exceeds approximately one-tenth of the length 
of the surface wave. 

Alternating field hydromagnetics already has practical application: the 
melting and processing of metals while levitated in an alternating magnetic 
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field (Chandrasekhar 1961; Okress, Wroughton, Comentz, Brace & Kelly 1952 
Peifer 1965; Zhezherin 1959). It has frequently been noted that the maximum 
amount of molten metal which can be levitated stably dspends on the surface 
tension of the liquid being levitated (Okress et al. 1952; Zhezherin 1959; Weisberg 
1959). For larger quantities of metal, the liquid metal is observed to drip or run 
from the bottom of the suspended fluid, where there is usually a null in the 
magnetic field. Such instability severely limits the amount of fluid that can be 
levitated at  any one time. Zhezherin has suggested the use of auxiliary magnetic 
fields a t  frequencies different from that of the main levitation field to stabilize 
the surface of the fluid in the null region. Intelligent design of such a stabilized 
system must include a dynamic stability analysis in terms of hydromagnetic 
surface waves. 

In  another field, Osovets (1963) has reviewed the numerous proposals that 
have been advanced for enhancing the stability of plasma containment systems 
through the use of alternating magnetic fields, either alone or in conjunction with 
a steady magnetic field. 

2. Observation of hydromagnetic surface waves in NaK 
Experiments performed to observe hydromagnetic surface waves in alternating 

magnetic fields involved values of 6k from 0-05 up to 0.65. Eutectic NaK (22 yo 
sodium, 78 Yo potassium) in an evacuated system was used as the conducting 
fluid. 

Description of the experiment 

The surface waves were excited in a glass-covered, rectangular container or 
resonator, which was constructed from annealed, oxygen-free copper. The reson- 
ator chamber was evacuated to a pressure of about torr prior to filling with 

coil 

4.8 crn 

FIGURE 2. Essential features of the experimental surface wave 
fluid resonator. 

NaK, in order to limit the amount of oxide which formed on the surface of the 
NaK. Other basic features of the resonator and the means for generating the 
alternating magnetic field are shown schematically in figure 2. The resonator was 
filled to a depth of 0.6 to 1.0 em with NaK. The side walls of the resonator extended 
upward 4.8 ern from the bottom and were joined at the top by a copper piece, 
to  provide a closed path for the alternating currents which flowed across the sur- 
face of the fluid and generated the magnetic field. A long solenoidal coil coupled 

22-2 



340 M .  J .  #chaffer 

5 -  

theresonator system to  either a 6 kc/s alternator or a 130 kc/s vacuum tube power 
generator. The resonator and the coil were cooled by forced circulation of kero- 
sene. The unperturbed magnetic field above the fluid was measured by the 
voltage induced in a small probe coil inserted in the region between the glass 
cover and the solenoid. Relative motion of the fluid was detected by the fluctua- 
tions in the amplitude of the magnetic field, Surface waves were excited in the 
resonator either by shaking the whole resonator mechanically, or by perturbing 
the magnetic field at one end of the resonator. 

The shaking frequencies which produced the largest relative fluid motion, as 
determined by the magnetic field fluctuations, were recorded as the resonance 
frequencies. The resonances that correspond t o  zero magnetic field were actually 
observed with a small magnetic field applied. This field was large enough so that 
the fluid motion could be observed with the probe, but it was far too small to  
produce any significant force in the system. 

- 
2 0  - 

First Second 
mode - mode - 

I I I I I I 

0 0 5  PO 1.5 2 0 x 1 0 ~  

H: (A2/cm2) 

FIGURE 3. Experimentalresultsoffrequencyvs. magnetic fieldfor: (a )  firstmode ( A  c 12 cm); 
( b )  second mode ( A  x 6 cm); and (c) third mode ( A  z 4 cm), using a 130kc/s magnetic field. 
Dotted lines indicate the curves calculated from d.c. theory. 
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E x ~ e r i ~ e n t a l  results 

The squa,re of the observed resonance frequencies for the first, second, and third 
modes is plotted against the mean square magnetic field, H$ = +Hi in figure 3. 
The experimental points fall very nearly on a straight line, thus verifying the 
functional dependence of the frequency shift on the applied magnetic field that 
was predicted by the dispersion relation (1). The experimentally observed 

Calculated Observed 
A A 

I 

1 2.54 5.0 x 10-4 3.25 5.0 x 10-4 
2 4- 8 3.2 x 10-3 6.2 1.9 x 10-3 
3 6.85 8.3 x 10-3 8.6 5.7 x 10-3 

TABLE 1 

resonance frequencies with no magnetic field applied and the observed values 
of the slope Afz/AH$ are compared in table 1 to the corresponding quantities 
calculated from (1). The calculations are made on the basis of a = 1.0cm; 
b = 3.8 em, the distance between the free surface and the top plate; and that the 
wavelengths for the first, second and third modes are 12.0 em, 6.0 cm and 4.0 em 
respectively. 

The discrepancy between the calculated and the observed values for the zero- 
field resonance frequencies is due to the highly idealized assumption that the 
modes in the resonator are simply multiple half-wave segments of an infinite 
train of plane waves. In  actual fact, the free surface of the NaK is observed to 
stick to the walls of the resonator at  some places, and to slide more or less freely 
at  others. Moreover, this pattern of sliding and sticking can change from day to 
day. Sticking lowers the wavelengths of the natural modes by an amount that 
depends on the surface tension of the fluid, thereby raising the natural frequencies 
of the resonator. It is not surprising, then, that the observed natural frequencies 
in the resonator are some 30 7, higher than the values listed in the first column 
of the table. 

There is also a sizeable discrepancy between the observed and the calculated 
values of the frequency shift slope Af2/AH$, for the second and third modes. 
Actually, the experimental frequency shift is observed to vary from day to day, 
presumably because the variations in the pattern of sticking and sliding at  the 
walls give rise to changes in the natural mode configurations. 

Thus, the k entering into equation (1) is not simply 27r divided by a submultiple 
of 12cm, but an effective value corresponding t o  the complex of modes that 
actually exist in the system. Furthermore, (1) does not account for fringing of 
either the applied magnetic field or its perturbed components at  the open ends 
of the resonator system. 

However, in spite of the discrepancies, it is apparent that hydromagnetic 
surface waves are observed, and that their properties are essentially as predicted. 
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To determine the effect of changing the electromagnetic skin depth, frequency 
shift us. magnetic field strength data was taken at two different magnetic field 
frequencies, 6.0 and 130 kc/s, corresponding to skin depths of about 

4-15 x 10-3m and 0-895 x 10-3m 

respectively. The results for the third mode waves, corresponding to 6k of about 
0.63 and 0.14 at the two field frequencies respectively, are plotted in figure 4a. 
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FIGURE 4. Experimental results of frequency ws. magnetic field for two different skin 
depths: (a )  third mode, ( b )  first mode; ( c )  first mode, same system, but 16 days later. 

The frequency shift slope at  the larger skin depth is less than half the slope a t  
the smaller skin depth. The results for the first mode waves, corresponding to 
6k values of about 0-21 and 0.046 respectively for the two frequencies, are plotted 
in figure 4 b, c. The difference between the frequency shifts a t  the two different 
skin depths is not so large as with the third mode, but it is still significant. 

In  both cases, the lower frequency field is less effective in shifting the resonance 
frequencies of natural wave modes in the resonator than the higher frequency 
field, since in the large skin depth case the field does not interact as strongly with 
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the fluid wave. As the skin depth increases and becomes comparable to the wave- 
length of the surface wave, the surface waves produce less and less distortion 
of the applied magnetic field. As is shown qualitatively in figure 5, the magnetic 
field begins to penetrate the surface perturbations almost as if they were not 
there. A quantitative theory of hydromagnetic surface waves is now developed 
for the case of small, but non-zero, skin depths. 

Vacuum Magnetic 

Fluid / 
Interface 

FIGURE 5. Appearance of the magnetic field near the surface of a conducting 
fluid with a sinusoidal surface perturbation. 

3. Finite skin depth analysis 
The generalization of the wave dispersion relation (1) for finite skin depth 

penetration, is obtained by solving for the wave motion of the fluid under the 
influence of forces due to a magnetic field which penetrates the fluid. The linear- 
ized equation of motion and the equation of continuity for an incompressible 
fluid without viscosity are 

(2) 

and v.5 = 0, (3) 

a25 p- = - V p + V * M  
at2 

where is the vector displacement of the fluid, p is the fluid pressure, and V . M 
gives the magnetic force density in the fluid. When the applied magnetic field is 
uniform above the fluid and applied in the z-direction, as in figure 1, and if the 
surface waves are propagating in the z-direction, the linearized Maxwell stress 
tensor can be written as 

where (5) 
is the magnetic field arising from ordinary skin depth penetration of a conductor 
at a plane surface, and h, and hfz are the x- and z-components of the small 
perturbations to this magnetic field due to the waves in the fluid. In  writing 
equation (5) for Hoz it is assumed that a % 8, so that the effect of the bottom of the 
fluid on the magnetic field can be neglected. The equations for the magnetic 

Hoz = HP eZl8 cos (wo t + x/S) 
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field in an ohmically conducting fluid, when the electric displacement current is 
negligible, are 

and V*H = 0, (7) 

where c is the electrical conductivity of the fluid. 
Equations (2) to  ( 7 )  must be solved simultaneously if an exact linearized solu- 

tion is to be obtained. A considerable simplification results, however, if the 
response of the fluid to the high frequency components of the magnetic force 
density is neglected. Since the ratio of the fluid wave frequency to the magnetic 
field frequency, w/wo, is less than 0.002 in all the experiments performed, this 
simplification is well founded. A further simplification is obtained if the motional 
term V x ((ag/at) x H} in equation ( 6 )  for the magnetic field is dropped. Neglecting 
this term affects the magnetic field calculated from (6) and ( 7 )  only at  order w/wo 
and higher. These motional effects on the magnetic field would be important in 
the calculation of electrical damping or of parametric interaction of the field 
with the fluid; but they are not necessary for deriving a dispersion relation which 
explains the experimental results presented in figure 4. With this simplification, 
the magnetic field can be calculated independently of the fluid motion, except 
for the condition that the field be continuous at the perturbed fluid interface. 

Magnetic field and force density 

In  order to satisfy the condition of magnetic field continuity at the perturbed 
interface, the components h,, and hP of the perturbed magnetic field in the fluid 
must be of the same period in z and must contain the sum-and-difference fre- 
quencies wk = w o k  w.  A suitable solution for this magnetic field when a $ 6, 
which can be verified by substitution into (6) and (7) is 

h,, = 2 eax sin (kz )  [h,, cos (w* t +Px) + h,, sin (w* t +@)I, (8) * 

h, = C eaxcos (kz )  cos (us t +Px) - P - sin (w* t + Px)] 
s k 

Neglecting factors of order w/wo, the space-rate constants a and /3 must satisfy 
the conditions 

01p = &fJopoc = 1/62. (11) 

The coefficients hfl  and h,, are to be determined by the requirement of field 
continuity at the fluid interface, x = E0 cos (kz )  cos (wt). The details of matching 
this boundary condition and calculating the two field coefficients are contained 
in the appendix. 

Using the magnetic field quantities given in (5) ,  (8) and (9), the Maxwell 
stress tensor can be computed from (4). Expanding trigonometric products of the 
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form [cos (GJ* t + px) cos (wot + zfS)] into a sum of the component frequency terms, 
and dropping the high frequency component terms, the wave frequency magnetic 
force density in the fluid is 

v . M = p d  exp {(a + I/S) x> cos ot 
6 

+ M h f l  - hjz) cos {P - (l/S)I x 

+ (hfl  + hf2)  sin (,8 - (1/S)} z} sin Icz , (12) I 
where the steady pressure due to the +poH& term in (4) has also been dropped. 

Pluid motion and pressure 

The fluid motion is now obtained from (2) and (3), using (12). The fluid displace- 
ment vector E, is separated into a curl-free component and a component with 
curl 

(13) E = E,l + Ez, 
where Vx?&=O and VxE,,+Q. (la), (15) 

Since an additional curl-free component with non-zero divergence can always 
be added to E,, and subtracted from without destroying the separation defined 
by (13) to (15), it is convenient to require that El and g2 satisfy (3) individually. 
Then, taking the curl of (2) twice in succession, the following set of equations is 
obtained for El and Ez : 

V2gl = 0, (16) 

v.gl = 0, (17) 

a2 
p atz ( ~ 2 6 ~ ~ )  = exp { (a  + i) x] cos ~z cos wt 

x h cos p-- x-h sin p-- x , (18) [ j 2  ( i) f1 . ( i) 1 
a2  

p atz ( ~ 2 6 , ~  = a 7 exp ( (a  + i) x] sin ~ c z  cos wt  

where 

A suitable solution for El, which is periodic in z and which obeys the condition that 
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its x-component is zero at the bottom of the fluid, x = -a,  is 

g12 = x sinh k(x + a)  cos (kx) cos (ot), 
sinh ku 

cosh k(x + a )  
sinh ku 

& = - X  sin (kz )  cos (wt) ,  

where X is a coefficient to be determined. This motion for 5, is simply the motion 
of an ordinary linearized hydrodynamic surface wave. A solution for g2 is 

t2%= exp( (a+l /S )x )cos (k z )cos (w t )  

Ep2= exp{(cc+l/S)x)sin(kx)cos(wt) 

Because of the rapid decay of g2 in the x-direction, the effect of the bottom plate 
on this component of the motion is negligible, if a/S is greater than 2. Therefore, 
the effects of the bottom have not been included in solving for g2. 

Since the displacement of the free surface was assumed to be 

6, cos (kz)  cos (wt )  , 
the coefficient X in (20) and (21) must be 

x = 'go-A. ( 2 8 )  

Thus, by (13) and (20) to (ZS), the complete motion of the fluid has been deter- 
mined. The principal characteristics of the motion become more apparent if 
a, p, h,, and h,, in the expressions for the coefficients A,  B, C and D are replaced 
by their expansions in powers of Sk, given as equations (AS) to ( A l l )  of the 
appendix. For Sk < 1, the dominant terms of the fluid displacement are 

sinh k(x + a)  
sinh (ka) 

- rs 8k coth (kb ) )  e2=j6], (29) 

cosh k(x + a)  g2 = [,sin ( k z )  cos (wt) [ - (1 +'a Sk coth (kb) )  
4w2p sinh (ka) 
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The magnetic field directly affects only the fluid within a shallow layer about 
one-half of a skin depth thick at  the free surface. As seen from (30), the fluid in 
this layer is driven parallel to the fluid interface by the magnetic field in a direc- 
tion which tends to be opposite to the x-component of the displacement of the 
main bulk of the fluid. This tangentially displaced fluid accumulates every half 
wavelength and reduces the displacement of the interface relative to the surface 
displacement which would correspond to the motion of the main bulk of the fluid. 

Using the expressions for the fluid displacement, !& as given by (13) and (20) 
to (28), and using (12) for V.  M the fluid pressure p is obtained by integrating 
( 2 ) ,  the fluid equation of motion. The final result is: 

w2p cosh k(x + a) 
k sinhka 

p = cos (kz) cos (wt)  

It is by means of the steep pressure gradients appearing in the second half of 
this expression that the force of electromagnetic origin is coupled to  the fluid. 

Dispersion relation 

The wave dispersion relation is obtained by writing a stress balance equation at 
the surface of the fluid. If the stresses are linearized and evaluated at x = 0, 
instead of at the actual perturbed interface, the normal stresses to be balanced 
are: (i) the fluid pressure, p ,  given by (31) and evaluated at  x = 0, which acts 
upward; (ii) the surface tension stress, T(a2[x/ax2) l x z 0 ,  which also acts upward; 
(iii) the gravitational stress, pg&;zlz=o, due to the fluid which is raised or depressed 
from the equilibrium surface, and which acts downward when g is taken as a 
positive number; and (iv) a stress due to the unperturbed component of the 
magnetic field which acts on the perturbed surface. This last stress, which acts 
upward, is given by 

&cos (kr) 008 (ot) 
Pmag = (V. M),dx 

when linearized. Dropping the high frequency terms, performing the integration, 
and expanding the exponential appearing in H& to fist order in to/&, this stress 
is seen to be 

Pmap = - ~ ~ H ~ ~ ~ c o s  7 (kz )  COB (wt). (33) 

There are no unbalanced tangential stresses at  x = 0 in this linearized analysis, 
since fluid viscosity has been neglected and since the tangential magnetic forces 
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are already balanced by the c, motion. The stress balance then leads to 

which is the wave dispersion relation. The dispersion relation is obtained in a 
form more suited for comparison with the experimental results if a, P, hfl  and 
h,, are written as power series expansions in terms of Sk, as given by (AS) to 
(A 1 1 )  of the appendix. Then, for Sk < 1, the dispersion relation becomes 

u2p coth (ka)  = Tk3 +pgk 

1 Sk 
2 2 

+'& [coth (kb )  + - { 1 -  coth2 ( k b )  - coth (ka) coth ( k b ) )  , 

(35) 
correct to the first power in Sk. The assumptions made in the derivation of this 
equation further restrict its application to  cases where S < a .  

Comparison with experiment 

The experimental observations of the variation of the frequency shift slope with 
skin depth, presented in figure 4 a ,  b, c, are now compared with the theory de- 
veloped above. 

The data for the third mode are contained in figure 4 a .  Assuming that the wave- 
length of this mode is 4.0 em, the parameter Sk is calculated to be 0.63 at 6 kc/s 
and 0.14 at 130 kc/s. The depth of the fluid, a, was estimated to be about 0.6 em 
in this experimental run, and hence the distance to the top plate of the resonator 
assembly, b, is 4-2 em. The values predicted from (35) for the slopes of the fre- 
quency squared versus H i  curves are : 

at 6 kc/s, and 

- N  A f 2  [0.57] 
AH: 47r2p coth ka 

- N  4f2 [0-90] 
AH; 4772~ coth ka 

(36)  

(37 )  

at 130 kc/s. The ratio of these two predicted slopes is 0-57/0.90 = 0.63. However, 
the curves of figure 4 a  show slopes of 5-2 x c2 cm2/A2 s2 and 2.0 x 10-3 c2 em2/ 
A2s2 at  the two frequencies respectively. The ratio of these two experimental 
slopes is 0.38, which is smaller than the predicted ratio. Direct calculation from 
(34) ,  using (As)  and (A7), gives predicted values only slightly different from 
those given in (36 )  and (37 ) ,  which were calculated from the equation for the 
small 6k limit. 

Assuming that the wavelength for the first mode is 12*0cm, the parameter 
Sk is calculated to be 0.21 a t  6 kc/s and 0-046 at 130 kc/s. The depth of the fluid 
a, was estimated to be about 0.7 em in these particular experimental runs, and 
hence the distance b is 4.1 em. The values predicted from (35 )  for the slopes of 
the frequency squared us. H i  curves are: 

__ Af P0k2 [0*70] 
AH; - 4772~ coth ka 
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at 6 kc/s, and -- Af2 [0.96] 
AH: 4n2p coth ka (39) 

at 130 kc/s. The ratio of these two predicted slopes is 0.70/0-96 = 0-73. The curves 
of figure 4 b  show slopes of 9 x c2 cm2/A2 s2 at 6 kc/s, and 10 x 10-4 c2 em21 
A2s2 a t  130kc/s. The ratio of these two experimental slopes is 0.90, which is 
larger than the predicted ratio. On the other hand, the curves of figure 4c for 
the same experiment run 16 days later show slopes of 8.6 x lo4 c2 cm2/A2s2 at 
6 kc/s, and 12 x c2 cm2/A2 s2 at 130 kc/s. The ratio of these two experimental 
slopes is 0.72, which is essentially the same as the predicted ratio. A comparison 
of the two results for the first mode shows that there is a considerable lack of 
reproducibility in the experiment. However, the experiments always yield a 
decrease in the frequency shift slope whose magnitude is within about a factor 
of two of the theoretically predicted decrease. Therefore, although a completely 
reproducible experiment was not obtained, the analysis is capable of predicting 
the behaviour of the waves to a useful level of accuracy. 

4. Conclusion 
The experiments described in Q 2 demonstrate one case where it is possible to 

create a high magnetic Reynolds number hydrodynamic system in the laboratory 
by using high frequency magnetic fields. A related hydrodynamic phenomenon 
which can be studied by using liquid metals in alternating magnetic fields is the 
stabilization of the Rayleigh-Taylor instability by a magnetic field parallel to 
the free surface (Chandrasekhar 1961). Since it is a Rayleigh-Taylor instability 
which limits the amount of metal that can be successfully levitated by a magnetic 
field, this is a problem of practical significance (Okress et al. 1952; Peifer 1965; 
Zhezherin 1959; Weisberg 1959). It is impossible to stabilize completely a 
fluid interface against the Rayleigh-Taylor instability with a d.c. magnetic field, 
even if the fluid is perfectly conducting, because of the directionality of the 
magnetic field. However, with as .  magnetic fields, either a rotating magnetic field 
can be applied or two magnetic fields at  two different frequencies can be applied 
perpendicular to  one another, so that the magnetic field is non-directional in the 
time-average sense. Both these possibilities have been suggested by Zhezherin. 

Another approach to  suppression of the Rayleigh-Taylor instability on a 
fluid interface is to use continuum feedback to the interface through the magnetic 
fields, as suggested by Melcher (1966). Again, alternating magnetic fields must 
be used in an experimental study of such a system, since this is the most practical 
way to obtain a high magnetic Reynolds number. 

The principal condition that must be met in all such experimental studies is 
that the skin depth must be smaller than about & of the shortest wavelength to 
be stabilized. 

Other hydromagnetic systems which can be studied by using liquid metals in 
alternating magnetic fields are the linear pinch and the theta pinch. Not only 
should the basic pinch instabilities be observable, but it should be possible to 
demonstrate hydromagnetic minimum-B stabilization, a topic of current interest 
in plasma confinement. Furthermore, by using several ax. magnetic fields at 
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different frequencies, it is possible to construct novel time-average minimum-B 
systems. 

This article is based on a doctoral thesis, written while the author was studying 
on a National Science Foundation Cooperative Graduate Fellowship. The author 
wishes to acknowledge the help of Prof. J. R. Melcher, his thesis supervisor, and 
Profs. H. A. Haus, W. D. Jackson and J. G. Siambis, who were on his thesis com- 
mittee. Prof. E. s. Pierson and Mr R. Porter helped greatly by sharing their 
experience in the handling of NaK. The experimental work was supported in 
part by NASA Grant NsG-368. 

Appendix 
The magnetic field in the vacuum region above the fluid must satisfy Laplace's 

equation. Taking account of the effect of the highly conducting plate at  x = b, 
a solution for h,, the perturbation to the uniform applied field that is sufficiently 
general to match conditions at  the interface is: 

sinh k(b - x) 
hVx = ~~ sin (kz)  2 [h,, cos w+ t + h,, sin wf t ] ,  

sinh lcb & 

cos (kz )  x [hvl cos wi t + hv2 sin w+ t ] .  (A21 
h,, = - 'Osh k(b - 

sinh kb f 

Since there cannot be a surface current in a finitely conducting material, the 
magnetic field must be continuous across the fluid-vacuum interface, 

6 = go cos (kz )  cos (wt) .  

The condition for continuity of the z-component of the field is 

Hp cos (wet) + hvzlx=5 
= hf,lx, + Hp exp - ( ( g o / & )  cos (kz)  COB (wt))  cos [o,t + (go/6) cos (kz)  cos (wt) ] .  

If the perturbation to the fluid is so small that ( , /a  < 1, then (A3) can be linear- 
ized, giving 

(A 3) 

h&= = hf,[ + (go 4 / 2 8 )  2 [cos w& t - sin w+ t ]  cos (kz). (A41 
f 

The linearized condition for continuity of the s-component of the field can be 
written down directly as 

~ v z 1 5 = 0  = hfxlx=o* 
Expressions for h, from (8) and (S), and for h, from (A 1) and (A2) are then sub- 
stituted into the continuity conditions, (A4) and (A 51, where equating terms with 
like time dependence gives four equations in the unknown coefficients h,,, h,,, 
h,, and h,,. Solving this set of equations yields: 

k60HP a +/3+ k coth kb h -  - 
f1 - - 26 a2 + /32 + 2ak coth kb + k2,coth2 kb 

EOHP a - p + k coth kb 
28 a2 + p2 + 2ak coth kb + k2 coth2 kb ' 

hf,  = - 
There is no need to solve for h,, and hVB. 
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When 6k < 1, power series expansions of a,P, h,, and h,, are more convenient 

than the exact expressions. These series expansions are: 

1 
6 

a = -+$6k2, 

correct to third-order terms in Slc (which happen to be zero) and 

h f1 - 2 kEo Hp [ 1 - plc coth (kb)] , 

h,, = 9 [&Yc coth (kb)  -t S2k2 (1 a - cot; "))I , 

(AhO) 

correct to second order in Sk. 
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